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Abstract

In this paper, new developments for the nonparametric processing of modal test data are presented. Classically, random

noise signals are applied to deal with possible nonlinear distortions during frequency response function measurements of

linear dynamic systems. However, the use of multisine excitation signals allows the engineer to control much more his

experiments. First of all, the nonparametric estimation of multivariable frequency response functions can be more easily

based on an ‘‘errors-in-variables’’ stochastic framework. In addition, the application of a well-chosen multisine excitation

permits improvement of the data quality, as well as the detection, qualification and quantification of nonlinear distortions

during FRF measurements. To make the presented techniques available for multi-input modal testing, attention is paid to

the design of optimal multi-input excitations by maximizing the Fisher information matrix as well as minimizing the crest

factor of the applied excitation.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In a limited amount of cases it is not possible, or very difficult, to control, or even to measure, the excitation
forces acting on the structure under test (bridges excited by traffic and wind, operating machines, etc.). In most
modal analysis applications, however, the excitation forces can be imposed with an actuator, and the engineer
can choose which excitation signal to use.

A common way of measuring Frequency Response Functions (FRF) in the 1960s consisted in using slowly
varying swept sine excitations together with tracking filters. With the development of signal processing
techniques, such as the Fast Fourier Transform (FFT), it became possible to use broadband excitation signals
[1]. This resulted in a considerable reduction of the measurement time, but also in important additional errors
(such as leakage and aliasing) if no precautions were taken.

One way to avoid these errors consists in using periodic excitation signals such as multisines, which will also
be used throughout this paper. Besides avoiding spectral errors, multisines offer other advantages such as
optimal signal-to-noise (SNR) ratios, and a reduction of the number of periods required for averaging during
the nonparametric identification of the FRF matrix (nonparametric stands for describing the dynamics of the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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observed system by its spectral contents i.e. a transfer function). In addition (as will be discussed in Section 3)
a synchronized set-up, with deterministic excitation using e.g. multisines, permits the use of a maximum
likelihood FRF estimator developed in a ‘‘errors-in-variables’’ (EV) stochastic framework. As will be shown,
such an estimator outperforms the traditionally-used FRF estimators such as the H1 and Hv [2].

Modal testing of large structures, typically encountered in the automotive and aerospace industries,
certainly requires the use of multi-shaker excitation. Very early, the possibility offered by exciting multi-input
systems with uncorrelated signals has been investigated. The most obvious approach consists in applying
independent random noise sources to the different inputs of the system (see for instance Ref. [3]). In Ref. [4]
the design of uncorrelated binary sequences was studied. Nowadays, it is possible to generate more
sophisticated signals, such as multisines for instance, which offer a lot of flexibility to the test engineer [5]. In
this paper an excitation scheme for multisines will be considered only needing the design of a single multisine
in the frequency band of interest. This excitation scheme (cf. Section 4.2) is optimal in the sense that it
optimizes the Fisher information matrix for amplitude constrained inputs.

However, besides reducing the measurement time and improving the quality of the FRF data, the effects of
possible nonlinear distortions become even more important. For this reason, most engineers still prefer the use
of random noise excitation, since the contribution of nonlinearities is expected to be reduced by the averaging
of random noise sequences. Nevertheless, the ideal FRF measurement method should not only provide
accurate FRFs, but at the same time the presence of nonlinear distortions should be known to the engineer in
order to properly judge the suitability of the FRF data for a subsequent modal analysis, which in the end is
based on linear assumptions. It will be shown in this paper how the use of specially selected periodic excitation
signals extends the engineer’s possibilities to detect, qualify and quantify nonlinear distortions, which can have
a large impact on the further modelling results if not recognized. Recently, new developments for this purpose
have been presented for single input single output systems based on the use of multisines [6–10].

For cases where the typical input amplitudes clearly distort the structure’s linear behaviour (e.g. a high level
of operational input amplitudes) efficient nonlinear frequency analysis tools are available [11–13]. However,
this paper aims at proposing additional tools to assess the level of distortions when one wants to use a modal
analysis approach. In the end, modal-based analysis and design have become an integrated part in the
automotive research and development process. Engineers appreciate the strong relation between the models
and physics of structures and often use modal-based optimization tools that were developed in the recent years.

As a summary, this paper generalizes recently developed multisine-based SISO techniques to multivariable
modal testing, where the aspects of multi-input experiment design, ‘‘errors-in-variables’’ nonparametric
processing and the assessment for nonlinear distortions during testing are combined in an advanced modal test
procedure. More specifically, the following contributions will be discussed:
�
 the maximum likelihood estimation of multivariable FRFs and their noise covariance matrix from MIMO
multisine measurements when using a synchronized measurement setup.

�
 the optimization of multi-input excitation in modal testing, simply by the use of one single multisine
realization based on an excitation scheme that maximizes the so-called Fisher information matrix.

�
 the practical assessment of the recently developed multisine-based methods for the detection and
characterization of nonlinear distortions for mechanical structures and the generalization of these tools to
MIMO modal testing.

�
 illustration of the benefits and at the same time ease-of-application of the different tools that were integrated
in a multivariable modal testing procedure by means of experimental results for an application in the field of
vibration analysis for automotive engineering.

2. Class of multisine signals

A multisine is a periodic broadband signal consisting of a sum of (co-)sines with harmonically related frequencies

sðtÞ ¼
XF

k¼1

Ak cosð2pkf 0tþ fkÞ. (1)
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The period of the signal is T ¼ 1=f 0. The amplitudes, Ak (k harmonic numbers) of the (co-)sine can be chosen
arbitrarily while the phases fk are usually selected in such a way that the crest factor (i.e. the ratio of the peak
and effective (RMS) value) is minimal. The amplitudes completely determine the auto-power spectrum of the
signal, while the phases influence the peak value of the signal. Multisine can be considered as a generalization
of stepped sine measurements. Stepped sine frequency response measurements are usually characterized by
very good signal-to-noise ratios but long measurement times. Multisine makes it possible to reduce the
measurement time while maintaining good SNRs [14].

By replacing classically-used random noise by multisine signals the user gets additional advantages:
�
 Leakage errors are avoided when properly used (i.e. synchronized measurements of an integer number of
periods).

�
 The amplitude spectrum Ak is deterministic, resulting in a better SNR behavior, especially for a small
number of averages/realizations.

�
 A full control over the amplitude spectrum is obtained such that it is possible to focus all the power in a
desired frequency band, or to avoid the excitation of specific frequency bands or lines.

�
 In addition insights in the presence of nonlinear distortions can be obtained, e.g. the level of the even and
odd nonlinear distortions can be separated, at the cost of an increased measurement time (factor 2 for odd to
4 or odd–odd multisines).

3. Multivariable ‘‘errors-in-variables’’ frequency response measurements

The nonparametric estimation of FRFs (or impulse response functions) is of primary importance in many
scientific investigations. This is the reason why much attention has been paid to nonparametric estimators in
the literature [3,15–17,2]. Most estimators, however, only consider the errors on the output measurements, not
the input errors. In many practical situations, however, the disturbances on the input measurements can
become as large as the ones on the outputs.

The reason for using an EV framework relates to a typical modal test setup, where there exists a permanent
fixation, a so-called stinger, between the electrodynamic shakers and the structure. Such a stinger, having a
high stiffness in the longitudinal direction while being flexible in the transversal direction, serves as a interface
to ensure that the forces are applied perpendicular to the structure. As a result, around the resonance
frequencies of the structure, the structure will resist additional input of energy resulting in low levels of the
applied force and consequently higher noise levels on the input (force) Fourier data. Practically this means
that the SNR drops at the resonance frequencies and one can certainly not assume that the applied force is free
of errors. This is certainly not in favour of the H1 FRF estimator, which requires that the input noise must be
negligible in order to avoid biased FRF estimates. Therefore, it is certainly beneficial to work in an EV
framework, which is in the case of arbitrary excitation (e.g. random noise) possible by the use of an
instrumental variables (IV) method (see for instance Refs. [18,19]). The IV method usually requires an
additional data sequence (i.e. the instrumental variables) which can be considered as a drawback. A positive
result is the fact that, under some mild conditions, the IV estimate can be proven to be strongly consistent.
Another possibility is to use the Hv estimator, which relies on the total least squares method. The Hv estimates
are (statistically) consistent when the input/output errors are all equally large and uncorrelated, which is often
not the case in practice. Then, consistent estimates can still be obtained by introducing a scaling matrix
resulting in a generalized total least squares problem [20]. To derive this scaling matrix, however, the ‘‘true’’
covariance matrix of the input and output errors should be a priori known. In the next two sections the
nonparametric estimation of FRFs will be revisited for multisines taking into account the specific aspects of
periodic excitations, i.e. the availability of repeated observations within a synchronized setup.

3.1. Problem formulation

Consider the multivariable system with Ni inputs and No outputs as shown in Fig. 1. If the ‘‘true’’ input
and output signals, f 0ðtÞ 2 RNi and x0ðtÞ 2 RNo , were observable at equidistant time instants tn ¼ nt,
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Fig. 1. Multivariable frequency-domain EV setup.
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n ¼ 0; . . . ;N � 1, with t the sampling period and T ¼ Nt the observation period, and if the sampled signals
could be discrete Fourier transformed without introducing errors (which is the case for periodic signals), then,
for all angular frequencies in O ¼ fok ¼ 2pk=T : k ¼ 0; . . . ;N=2� 1g, the following linear mapping would
hold exactly

X 0ðokÞ ¼ HðokÞF0ðokÞ, (2)

where HðokÞ 2 CNo�Ni stands for the multivariable FRF matrix at angular frequency ok, while F0ðokÞ 2 CNi�1

and X 0ðokÞ 2 CNo�1 are the corresponding discrete Fourier transforms of the ‘‘true’’ Input/Output signals.
In practice, however, (as illustrated in Fig. 1) errors usually affect the measured Fourier vectors, and

consequently, what is observed are not the ‘‘true’’ Input/Output Fourier data, D0ðokÞ ¼ ½F0ðokÞ
H ;X 0ðokÞ

H �H ,
but D0ðokÞ together with some random perturbations, EdðokÞ ¼ ½Ef ðokÞ

H ;ExðokÞ
H �H (�H stands for the

Hermitian transpose operator). The problem, thus, becomes statistical, resulting in random observations,
DðokÞ ¼ ½F ðokÞ

H ;X ðokÞ
H �H .

Consider now the set fðF mðokÞ;X mðokÞÞ : m ¼ 1; . . . ;MXNig consisting of M observations of the Input/
Ouput Fourier vectors at angular frequency ok. Using the above notations, the following EV stochastic model
relates the M measured observations

DmðokÞ ¼ D0;mðokÞ þ Ed ;mðokÞ

½HðokÞ;�INo
�D0;mðokÞ ¼ 0

)
m ¼ 1; . . . ;MXNi. (3)

By grouping the M input and output Fourier vectors into two matrices FðokÞ ¼ ½F1ðokÞ; . . . ;FM ðokÞ� 2

CNi�M and XðokÞ ¼ ½X 1ðokÞ; . . . ;X MðokÞ� 2 CNo�M , the EV model (3) becomes

DðokÞ ¼ D0ðokÞ þ Ed ðokÞ

½HðokÞ;�INo
�D0ðokÞ ¼ 0

(
with DðokÞ;D0ðokÞ;EdðokÞ 2 CðNiþNoÞ�M (4)

i.e. DðokÞ ¼ ½D1ðokÞ;D2ðokÞ; . . . ;DMðokÞ�, D0ðokÞ ¼ ½D0;1ðokÞ;D0;2ðokÞ; . . . ;D0;M ðokÞ� and
EdðokÞ ¼ ½Ed ;1ðokÞ;Ed;2ðokÞ; . . . ;Ed ;M ðokÞ�.

Note that for a multi-excitation setup, matrix F0ðokÞ of the Ni linear independent stimuli, F0ðokÞ ¼

½F0;1ðokÞ; . . . ;F0;Ni
ðokÞ� 2 CNi�Ni has to be of full row-rank, i.e. Ni of the inputs F0;mðokÞ 2 CNi�1 have to be

linearly independent.
An extensive list of statistical publications has been devoted to the closely related topic of EV regression

analysis [21–23]. Usually, when an EV model is considered, the covariance matrix of the perturbations,
Ed ;mðokÞ, is assumed to be a priori known (up to a constant multiplicative factor). An EV model together with
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this additional assumption is commonly referred to as the classical EV model. Without this additional
assumption (or ‘‘prejudice’’), the problem cannot be solved [17, p. 203].

One way to overcome this problem is to use an instrumental variables approach as presented in
Refs. [24,19]. Here, additional information under the form of the (‘‘noise-free’’) generator signals is used in
order to avoid the need for an a priori known noise covariance matrix. The statistical properties for the
multivariable formulation of the HIV is discussed in Ref. [19].

In the next section, however, an alternative approach will be proposed based on repeated observations of
deterministic signals. This can nowadays easily be realized in practice by applying periodic (broadband)
excitations (e.g. multisines) and by measuring, say, P41 periods of the signals. For the case of deterministic
excitation, the Instrumental Variables approach then boils down to a special case, i.e. the HML estimator [19].
3.2. Synchronized deterministic measurements

Nowadays, modal testing equipment has built-in generators permitting the synchronization of the
measurements of the applied forces and structures responses automatically. Using a synchronized
measurement setup in combination with a deterministic excitation facilitates the observation of the Input/
Ouput data for a number of integer periods of the deterministic signal.

Under the condition that repeated observations of the same deterministic excitation signals are available, it
is possible to obtain maximum likelihood estimates of the FRFs without requiring any a priori noise
information as well as the need for additional instrumental variables.

For a multi-excitation setup, a set of Ni linear independent stimuli, F0ðokÞ ¼ ½F0;1ðokÞ; . . . ;F 0;Ni
ðokÞ� 2

CNi�Ni , are required. For the different stimuli, the resulting Input/Ouput data are measured P times (i.e.
M ¼ NiP), which leads to the following EV model

DpðokÞ ¼ D0;pðokÞ þ Ed;pðokÞ

½HðokÞ;�INo
�D0;pðokÞ ¼ 0

)
p ¼ 1; . . . ;P. (5)

In Appendix A and Refs. [25,19] it is shown that the maximum likelihood (ML) FRF estimation in this case
leads to

ĤMLðokÞ ¼
1

P

XP

p¼1

X pðokÞ

 !
1

P

XP

p¼1

F pðokÞ

 !�1
. (6)

Note that the covariance matrix of the disturbances is not required anymore to obtain consistent estimates.
This estimator belongs to the class of maximum likelihood estimators [21] for which it has been proved that
they are consistent and asymptotically efficient. When the errors are not complex normally distributed but
have finite moments up to and including order four, then it can be proven that this Gaussian MLE is still
consistent but not efficient anymore.

As shown in Appendix B and Ref. [19] the multivariable expression for the estimate of the noise covariance
matrix for the MFRFs is given by

CovðĤMLðokÞÞ ¼
1

P

1

P

XP

k¼1

F kðokÞ

 !�
1

P

XP

l¼1

FlðokÞ

 !T
2
4

3
5
�1

� C�ðokÞ (7)

with

C�ðokÞ ¼ B̂ðokÞCDðokÞB̂ðokÞ
H ; B̂ðokÞ ¼ ĤMLðokÞ;�INo

� �
. (8)

The probability limit (p.lim) for P!1 results in the Cramér–Rao lower bound [26], which proves that the
HML is asymptotically efficient. In practice, the data covariance matrix CDðokÞ is determined from repeated
measurements under synchronous periodic excitation. The calculation of the power spectra reduces to the
calculation of the sample covariance matrix of the synchronized deterministic measurements [26].
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In the case of asynchronous periodic measurements, it is possible to use, besides the HIV estimator, FRF
estimators based on nonlinear averaging techniques. FRF estimators such as the Hari, Hhar and the H log are
also able to derive the FRF matrix with its covariance matrix under the EV noise model assumptions [27,28].
However, nowadays, modal testing equipment has built-in generators facilitating the automatic synchroniza-
tion of the measurements. Only in the case that an external generator is used, which cannot be triggered with
the data-acquisition system, the input and output signals cannot be synchronized. Recently, an automated
spectral analysis of periodic signals was proposed in Ref. [29], for which no synchronization between the
generator and the data acquisition is needed. This approach only requires that more than 2 periods of the
periodic signal are present in the acquired data.
4. Optimal experiment design

4.1. Crest factor optimization

Consider a flat multisine (i.e., a multisine with equal amplitudes) containing, say, F ¼ 128 frequency
components. If all phases are put equal to zero, an impact-like signal (see Fig. 2(a)) is obtained with a large
crest factor (CF) (CF ¼ 16 for this signal). In order to get measurements with a good signal-to-noise ratio
(SNR) the CF should be as small as possible. For comparison, the crest-factor of a sinewave equalsffiffiffi
2
p
� 1:414.

Several algorithms are available to minimize the CF of multisines by specific choices for the phases fk in
Eq. (1). In Fig. 2(b) a so-called Schroeder multisine is given. The Schroeder phases for a flat multisine are
given by Ref. [30] fk ¼ �ðpkðk � 1ÞÞ=F . It is possible to further reduce the CF by using optimization-based
techniques such as the swapping [31] or the l1 algorithm [32]. The l1 optimized multisine is given in Fig. 2(c).

For some applications [33,6,7], random multisines (i.e., pseudo-random noise) are preferred, for instance, to
average nonlinear effects as explained in Section 5. Note that pseudo-random noise (see Fig. 2(d)) can be
considered as being a sub-optimal multisine with equal amplitudes (to approximate white noise) and random
phases uniformly distributed in ½0; 2p½.

During modal testing, both input and output signals have to be measured, and thus, all signals should
preferably have a good SNR. Assume that, for instance, the Input/Ouput signals are related to each other by a
differentiator ðHðsÞ ¼ asÞ. In that case, the resulting output signal for the optimized input of Fig. 2(c) is given
in Fig. 3(a). The CF of this signal is not optimal.

Some crest-factor optimization algorithms allow to compress the input as well as the output signals [31,32].
In Figs. 3(b) and (c) the simultaneously optimized Input/Ouput signals are given taking into account the
transfer function between input and output. Using these algorithms, it is for instance possible to compress the
force signal of a shaker together with the displacement in order not to exceed the stroke limits of the
electrodynamic shakers.
4.2. Optimal design of periodic excitations

The quality of the MFRF estimates does not depend on the estimator only, but the excitation plays an
important role too. The design of optimal excitations relies on the maximization of the so-called Fisher
information matrix [26]. In many systems (e.g. control systems, biological systems) the choice of the excitation
is very limited. However, in an important class of problems, only the maximal values of the input and output
signals are restricted to maintain the linear behavior of the device under test and/or to avoid overflow of the
measurement equipment. This freedom can be used to design optimal experiments.

As multi-input modal testing requires uncorrelated inputs, 2 uncorrelated inputs are for instance readily
obtained by designing one multisine that only contains odd frequency lines ðf 0; 3f 0; 5f 0; . . .Þ and another
consisting of the even frequencies ð2f 0; 4f 0; 6f 0; . . .Þ [34,35]. Thus, the use of uncorrelated excitation signals
requires the design of as many uncorrelated multisines as there are inputs. In practice, applying uncorrelated
excitation signals (multisines, random noise sources, . . .) does not necessarily result in uncorrelated input
forces. There can be some degree of correlation due to the impedance mismatch between the excitation systems
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Fig. 2. Comparison of multisines for different phase realizations: (a) zero-phase multisine: CF ¼ 16:00; (b) Schroeder multisine:

CF ¼ 1:68; (c) l1 multisine: CF ¼ 1:40; and (d) random multisine: CF ¼ 3:07.
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and the system under test [36]. Fortunately, the multivariable FRF estimators such as the H1 or HML do not
require the inputs to be completely uncorrelated.

The design of optimal excitations relies on the minimization of the Cramer–Rao lower bound [26] (or,
equivalently, the maximization of the Fisher information matrix, which equals the inverse of the Cramer–Rao
matrix). It can be shown that the Cramer–Rao lower bound of the MFRF estimate is given by

CCRðvecðHðokÞÞÞ ¼
1

P
ðF0ðokÞ

TF0ðokÞ
�
Þ
�1
� CBD

ðokÞ, (9)

where vecðHðokÞÞ ¼ ðH11; . . . ;HNo1;H12; . . . ;HNoNi
Þ
T , CBD

ðokÞ ¼ BCDBH and BðokÞ ¼ ½HðokÞ;�INo
�. This

result is a generalization of Theorem 8.2.5 in Ref. [15] where only output disturbances are considered.
The Cramer–Rao matrix is a lower bound for the covariance matrix CovðĤMLðokÞÞ of the maximum
likelihood estimate ĤMLðokÞ. Thus, to decrease this lower bound, one has to minimize detðCCRðvecðHðokÞÞÞÞ

(i.e., so-called D-optimal design [37]), which equals

detðCCRðvecðHðokÞÞÞÞ ¼
1

PNiNo

detðCBD
ðokÞÞ

Ni

detðF0ðokÞ
TF0ðokÞ

�
Þ
No

. (10)

As a result, the optimal input design is the one that maximizes j detðF0ðokÞÞj.
Assume that we have designed, for a given frequency band, a multisine with optimized crest-factor. Its

Fourier coefficient at angular frequency ok will be denoted by SðokÞ. Applying this signal (with normalized
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Fig. 3. Input/Ouput CF optimization: (a) Output signal: CF ¼ 2:25; (b) Optimized input: CF ¼ 1:61; and (c) Optimized output:
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peak value) to the different inputs, taking into account the maximum allowed peak values Ri, i ¼ 1; . . . ;Ni,
results for observation p in the input vector

F 0;pðokÞ ¼ ðR1SðokÞQ1;p;R2SðokÞQ2;p; . . . ;RNi
SðokÞQNi ;pÞ

T . (11)

The question that has to be addressed now is how to choose the matrix Q 2 ½�1; 1�Ni�Ni such that
j detðF0ðokÞÞj attains its extremum. The answer follows from Lemma 2 in Appendix C showing that the
extremum is obtained when Q is a Hadamard matrix [4]. For instance, for Ni ¼ 2, Q ¼ 1

1
�1
1

� �
is optimal, and

for Ni ¼ 3, Q ¼ 1
1
1

�1
1
1

�1
�1
1

h i
.

5. Detection and characterization of nonlinear distortions

The most simple method for the detection of nonlinear distortions is the sine test, characterizing nonlinear
behavior by checking on the generation of higher harmonics. However, this method is very slow and it is
unacceptable that most of the available measurement time should be spent on the detection of nonlinear
distortions at the cost of reduced FRF quality. Another approach, commonly-used in modal testing, is based
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on random noise measurements at increasing excitation levels and comparing the FRFs that should be
amplitude independent in the linear range of the system. This method is also less appealing since two separate
measurements are needed and a possible nonlinear load behavior of the generator can occur due the input
impedance of the tested system. Another often-used test is the coherence check, which however does not allow
one distinguish between noise disturbances, leakage errors and nonlinear distortions.

Using random noise signals, small nonlinear distortions can still be reduced by sufficient averaging. This
results in the so-called ‘‘best linear approximation’’ for the system, although it introduces the important
disadvantages of leakage and transient effects. As a result, the class of suitable excitation signals is already
restricted to broadband random multisines. Depending on the measurement procedure and specific choice of
the amplitude spectrum two approaches, that allow the detection, qualification and quantification of nonlinear
distortions during FRF measurements, are now discussed.
5.1. Approach 1: Use of pseudorandom excitation

This approach is based on using random multisine or so-called pseudorandom excitations in a special
periodic measurement sequence. A pseudorandom signal is typically constructed with harmonic components
of equal amplitudes and random phases uniformly distributed in ½0; 2p½, every line containing equal energy in
the frequency band considered.

This approach allows one to measure in the same experiment the nonlinear and disturbing noise levels. This
is done by analyzing the variations over consecutively measured periods, and the variations over different
realizations of the input signal as is now briefly discussed (cf. Refs. [6,7,10,9] for details). Consider again the
multivariable ‘‘errors-in-variables’’ setup in Section 3.1 and Fig. 1. Using the FFT, the measured input and
output signals for each individual period m are denoted by F½r;m�ðokÞ, X½r;m�ðokÞ, with r ¼ 1; . . . ;R indicating
the different realizations for the pseudorandom input and m ¼ 1; . . . ;M ðM ¼ NiPÞ indicating P measured
periods of the periodic repetition of each realization according e.g. a Ni multi-input scheme maximizing the
Fisher information matrix as explained in Section 4.2.

Assuming for conciseness that there is no noise on the input, both input and output relations are then
given as

F½r;m�ðokÞ ¼F½r�ðokÞ, (12)

X½r;m�ðokÞ ¼ HRðokÞF½r�ðokÞ þ T ½r;m�ðokÞ þSX½r� ðokÞ þNX½r;m� ðokÞ (13)

with T ½r;m�ðokÞ a transient term, SX½r� ðokÞ the stochastic nonlinearities and NX½r;m� ðokÞ the disturbing noise. As
can be seen from the output relation, the following patterns are derived:
�
 For a given realization r the variations from one period to another are only due to the disturbing noise and
the vanishing transient effects. Thus averaging over consecutive periods m will only reduce the effects of the
disturbing noise, while the nonlinear distortions not depending on m do not disappear if more periods are
averaged (increasing M). As a result, applying a given realization of a pseudo random multisine for a
sufficient number of consecutive periods yields the combined stochastic error due to both the disturbing
noise and nonlinear distortions.

�
 Applying different realizations r for the pseudorandom multisine, the variations from one period to another
are now due to the disturbing noise, the vanishing transient effects and the nonlinear distortions. Hence, in
order to reduce the effects of the nonlinear distortions, averaging over different realizations should be
increased (by increasing R). As a result, applying sufficient different pseudorandom realizations yields the
stochastic error due solely to the disturbing noise.

Given the random character of the applied multisine signal, this approach combines in one experiment the
measurement of the ‘‘best linear approximation’’ of the MFRFs together with the detection of the error levels
due to disturbing noise and nonlinear distortions. The generally large number of averages can be reduced by
the use of CF optimized pseudorandom signal realizations [8].
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5.2. Approach 2: Use of odd– odd multisine excitation

The basic idea of this approach relies on exciting the system with an odd–odd multisine, where only the
frequencies 4k þ 1; k ¼ 0; 1; 2; . . . ; kmax in Eq. (1) have amplitudes different from zero. The output spectrum
X ðokÞ, calculated using an FFT and rectangular window again forms the basis for the detection of nonlinear
distortions. As discussed in Ref. [8], it holds that even nonlinearities excite only the even harmonics at the
output ð2k; k ¼ 1; 2; . . .Þ, while the odd nonlinearities appear only at the odd harmonics ð2k þ 1; k ¼ 1; 2; . . .Þ.
As a result of the specific choice of excitation signal, the output spectrum contains the following information
for k ¼ 0; 1; 2; . . . ; kmax:
�
 At lines 4k þ 1: the output consisting of the linear contribution and odd nonlinear distortions.

�
 At lines 4k þ 2: only the even nonlinear distortions.

�
 At lines 4k þ 3: only the odd nonlinear distortions.

This enables both the detection and characterization of the system’s nonlinear behavior. If at least PX2
successive periods are measured in one block, it is still possible to make the same conclusions at respectively
lines Pð4k þ 1Þ, Pð4k þ 2Þ and Pð4k þ 3Þ. In addition, it is also possible to derive the noise level (having a
nonperiodic behavior) at the lines that are not a multiple of P since these cannot be excited by a signal with M

periods in a single block (window).
In the end, the engineer derives from one single experiment the broadband MFRF measurement and the

detection, qualification and rough quantification of the nonlinear distortions, together with a noise analysis.
The price for this is a loss in frequency resolution caused by the nonexcited lines or an increased measurement
time (factor 4) by increasing the number of frequency lines to maintain the same resolution. The ‘‘best linear
approximation’’ for the studied system is obtained by applying odd–odd multisines with optimized crest factor
optionally combined with averaging over different realizations of the (random) odd–odd multisine at the cost
of an increased measurement time.

Remark. In practice, some additional problems can occur during modal testing using this approach. A
nonlinear interaction between the generator and the studied system can generate unwanted excitations at the
detection frequencies or create additional undesired harmonic components once the system becomes
nonlinearly distorted. Hence, it is no longer clear what part of the output should be assigned to the system
behavior and what part is due to the nonlinear interaction distortions. In that case, the output can be
compensated through a first-order correction ~X ðokÞ ¼ X ðokÞ � ~HðokÞ 	 F ðokÞ, where ~HðokÞ is obtained by a
linear interpolation between the FRF measurements at the excited frequencies.

6. Experimental results for body-in-white structure

The applicability of the presented methods was studied for the case of a typical modal test of a so-called
‘‘body-in-white’’ structure as shown in Fig. 4. The car body was suspended by means of steel cables connected
to the car body through 4 sets of 3 springs connected at the front and back part of the body. Multiple-input
testing was realized using 2 Bruël & Kjær shakers in the front part where the applied loading was measured
using PCB force sensors. Multiple responses were measured using PCB accelerometers and the results
presented for this specific study used 2 of the observed responses (1 sensor at the coupling of multiple parts by
means of welding and screw joints (see Fig. 4), the other on a side panel). The measurements were controlled
using MATLAB software in combination with a National Instruments data-acquisition board (with
synchronized 2 generators and 16 channels). Reason for this choice is the fact that until today commercially
available measurement systems still do not provide sufficient freedom in the application of ‘‘exotic’’ excitation
signals such as the odd–odd multisines.

The following issues were considered during the performed modal testing experiments:
�
 Three types of different excitation signals were considered during the experiments: random noise, pseudo
random (random multisine) and l1 optimized odd–odd multisine.
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Fig. 4. Modal test setup for car body: (left) view on suspended car body, (middle) shakers applying dynamic loading to the car and (right)

response sensor nearby a welded/screwed joint.

Table 1

Summary of excitation signals and data-acquisition parameters for three different experiments

Experiment 1 2 3

Signal type Random noise Pseudo random l1 odd–odd

Crest factor 3.156 2.391 1.084

# Consec. blocks P ðM ¼ Ni:PÞ 1 10 10

# Realizations R 10 10 1

Source level (low) (Vrms) 1.5 2.0 1.5

Source level (high) (Vrms) 4.0 4.5 3.5
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�
 Multiple input testing required the generation of uncorrelated inputs. As discussed in Section 4.2, this can be
realized by generating a single multisine (e.g. pseudo random or odd–odd) and applying, in this practical
case, this signal through two ðNi ¼ 2Þ subsequent load realizations according to the optimal Hadamard
1
1
�1
1

� �
matrix realization. For the random noise excitation, two different random noise realizations were

applied as is classically done in modal testing practice.

�
 A CF optimization (cf. Section 4.1) was applied for the odd–odd multisine excitation since only one
realization was used during the experiment. In order to find the ‘‘best linear approximation’’ of the
measured FRFs for the studied car body it is advised to use a CF optimization when applying odd–odd
excitation. Notice that a CF optimization could also be applied for the pseudo random excitation. However,
since this signal was applied during a sufficient number of consecutive periods and for different realizations,
the averaging process generally yields a ‘‘best-practice best linear approximation’’ without the need for CF
optimization (which also would increase the measurement time since the iterative l1 optimization algorithm
would have to be executed for each realization).

�
 Two different estimators are considered during the nonparametric processing of the acquired data in order
to estimate the multivariable FRFs and their corresponding noise covariance matrix as discussed in Section
3.2. For the random noise experiment, the classical H1 is used, while the EV approach could be applied for
the multisine (pseudo and odd–odd) cases.

�
 Three different experiments were performed in this study as summarized in Table 1. Both approaches for the
detection and characterization of nonlinear distortions during the FRF measurements, as presented in
Section 5, were applied for, respectively, the pseudo random and odd–odd multisine excitation. It should be
noticed that the total number of averages available for the nonparametric processing and assessment of
nonlinear distortions was 10 times larger for the experiment using the pseudo random excitation. This
because 12 consecutive periods (2 periods waiting for vanishing transient effects) were acquired for each of
the 10 pseudo random realizations. On the contrary, 12 consecutive periods were acquired for just 1
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odd–odd multisine realization that has in its turn a frequency resolution that is 4 times larger than the
pseudo random excitation in order to introduce detection lines in the excitation spectrum.

�
 For comparison reasons the measurement channel settings (channel ranges, anti-aliasing filters, . . .) were
kept the same throughout this study.

Remark. Consider a multisine and random noise excitation with the same number of spectral lines in the
observed Fourier data. Since a multisine signal typically has a constant amplitude spectrum, every spectral line
receives enough energy during a single record resulting in a good SNR for each spectral line. This is certainly
not the case for a random noise excitation so that the number of required records for random noise excitation
is always larger in order to obtain the same data quality compared to a multisine. As a result, a given data
quality is achieved with less measurement time in the case of a multisine. When using the specially designed
odd–odd multisine, the number of spectral lines is increased with a factor 4 in order to introduce the detection
lines while keeping the same frequency resolution for the excited spectrum. As a result, in one record, the
odd–odd multisine permits acquiring, besides system information, also information on the measurement setup
(noise) and possible nonlinear behavior of the studied system, at the cost of an increased measurement time for
a single record. However, with respect to achieving a certain data quality (in terms of SNR) in comparison to
random noise, it still applies that the same quality is achieved with much less observed records in the case of
the odd–odd multisine.

Fig. 5 shows the error levels (standard deviations) for the FRF estimates derived from the noise covariance
matrices, for the three different types of excitations. These matrices are computed during the nonparametric
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averaging process and multivariable expressions for the H1 and HML are given in Ref. [19] and Section 3. As
can be seen, the stochastic errors on the FRFs are smallest for the experiment using an l1 optimized odd–odd
multisine combined with the HML FRF estimator. The largest errors are related to the random noise excitation
mainly due to lower SNR for the measured signals within a single observation window (the number of
averages is the same as for odd–odd experiment), while a lower crest factor and a larger number of averages
(compared to the random noise case) reduces the stochastic errors on the FRF estimates obtained by the
pseudo random experiment.

Although the noise levels on the measured force signals were small in the data-acquisition setup, a gain in
accuracy is still obtained from taking also the input noise into account during nonparametric processing based
on an EV stochastic framework. This can also be observed in Fig. 6, where especially in the resonances (peaks)
the differences (typically 2 to 5 dB for this case) between the H1 (random noise) and the HML (pseudo/
odd–odd) are due to systematic (bias) errors in the H1 FRF estimates [24,19].

The effects of an increasing excitation amplitude on the FRF estimates can be observed in Fig. 7 for the
experiment using random noise excitation combined with the H1 estimator. It is seen that the resonance peaks
shift to lower frequencies and become broader with lower amplitude due to an increasing effect of nonlinear
distortions during the FRF measurements. Physically, this behavior can be related to the nonlinear
characteristics of the car body’s material properties, where the damping characteristics change and the
Young’s modulus becomes smaller at larger vibration amplitudes and hence larger displacements result. Since
the Young’s modulus is also proportional to the material stiffness, the resonance frequencies tend to decrease
(in this case by typically up to 1Hz with the frequency resolution Df ¼ 0:0125).

Fig. 8 illustrates the detection of nonlinear distortions using approach 1 with a pseudorandom excitation as
discussed in Section 5.1. Based on the averaging-based nonparametric analysis of the response spectra ð�Þ for
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the different multi-input realizations (‘‘even’’ stands for 1
1

� �
and ‘‘odd’’ for 1

�1

� �
) and different pseudorandom

realizations, the engineer gets a better insight in the errors on the FRF estimates, since a separation between
the disturbing noise level ð��Þ and the level of errors due to both the disturbing noise and nonlinear
distortions ð��Þ becomes possible. The difference between low and high excitation levels (cf. Table 1) is
clearly observed. For a low amplitude excitation, both error contributions are of the same level, while at a high
amplitude the error level for the combined noise and nonlinear distortions contributions is clearly higher,
typically by 10–25 dB, than the disturbing noise level. Notice also that this difference varies with the Input/
Ouput locations, which is related to the car body’s construction in terms of welding and screwing joints as well
as the material itself (i.e. high vibration amplitudes in the panel parts of the body).

More detailed information for the detection, qualification and a rough quantification is derived by approach

2 by the use of odd–odd multisine excitation. As explained in Section 5.2, the nonparametric analysis of the
response spectrum (optionally by averaging consecutive periods) can be done by separating the spectral energy
present at the excited and non excited even/odd frequency lines. This results in Fig. 9 with the response
spectrum ð�Þ, disturbing noise ð��Þ, even nonlinear distortions ð��Þ and odd nonlinear distortions ð�þÞ.
Again, it can be seen that for a low level of excitation the different error levels coincide, which indicates that
the nonlinear distortions are of the same level as the stochastic error due to the disturbing noise (SNR for the
response signals is 40–60 dB). Increasing the excitation amplitude clearly results in an increasing effect of
nonlinear distortions. The levels for the even and odd nonlinear distortions are now about 20–30 dB higher
than the disturbing noise, clearly indicating the dominance of nonlinear distortions in the overall error on the
observed responses. Moreover, more detailed information about the character of the nonlinearities as a
function of the frequency is derived by approach 2. It is noticed that the portion of even nonlinear distortions is
still about 8–12 dB higher than the odd nonlinear contribution, and so for the studied body-in-white structure,
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Fig. 8. Detection of nonlinear distortions at output using approach 1 with a pseudo random excitation: low-level (top) and high-level
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the even nonlinear distortions seem to be most dominant. Another important observation is the fact that
increasing the amplitude during modal testing is generally perceived as beneficial for the SNR of the measured
signals, which is only correct around the linear working point of the considered structure. However, as can be
seen from the results acquired on the car body, for both a low or high level of excitation the disturbing noise
level remains the same, while only the nonlinear contributions are enforced during testing at higher
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amplitudes. It can be concluded that both approaches presented in Section 5 provide powerful tools for the
engineer in order to assess the presence and character of nonlinear distortions during FRF measurements and
more general during modal testing. Performing the correction on the output spectrum for possible extraneous
nonlinear distortions, as discussed in Section 5.2, yields the same results. In this case, the nonlinear distorting
effects of the shakers were kept very small by the use of high quality shaker-amplifier systems in their optimal
working point (range).
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7. Conclusions

In this paper new developments for modal testing have been discussed. First, attention has been paid to the
maximum likelihood estimation of multivariable FRFs and their noise covariance matrix from multisine
measurements when using a synchronized setup. It is shown that this estimator outperforms the classically-
used FRF estimators. Next, the optimization of the CF of multisines as well as the application of multisines
for multi-input excitation have been included in a modal testing procedure. It is shown that simply by the use
of one single multisine realization, multi-input testing is possible based on an excitation scheme that
maximizes the so-called Fisher information matrix. Moreover, with the application of multisine excitations, it
becomes possible to measure the FRFs simultaneously with detection, qualification and quantification of the
nonlinear distortions during testing. In cases where nonlinear distortions are not avoidable, random multisine
testing still allows the measurement of the ‘‘best linear approximation’’ of the studied system. Finally, the
benefits and at the same time ease-of-application of the different tools to be included in a typical multivariable
modal testing procedure have been illustrated by means of experimental results for an application in the field
of automotive engineering vibration analysis.
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Appendix A. Maximum likelihood estimation of MFRFs

Recalling the EV model (5) where the inputs F0;p ¼ F 0;pðokÞ (ok is omitted for simplifying notations) are
considered deterministic. It will be assumed that the random vectors fEd ;p : p ¼ 1; . . . ;Pg are complex
normally distributed with

CovðEd ;k;Ed;lÞ ¼ CDdkl (14)

and CD 2 C
ðNoþNiÞ�ðNoþNiÞ an a priori known Hermitian-symmetric covariance matrix. Notice that CD

accounts for possible correlations among the Input/Ouput Fourier coefficients. For a wide class of probability
density functions of the time-domain noise, the Fourier coefficients are asymptotically (as the number of time
samples N !1) complex normally distributed and independent over the frequencies [15]. This motivates the
use of a complex Gaussian probability density function (PDF) to construct the MLE. The (asymptotical)
independence over the frequencies allows us to write the ML equations for a single frequency.

This results in the following (negative) log-likelihood function

‘ðĤ; F̂Þ ¼
XP

p¼1

tr C�1D Dp �
INi

Ĥ

� �
F̂

� 	
Dp �

INi

Ĥ

� �
F̂

� 	H
 !

. (15)

The matrices Ĥ and F̂ ¼ ½F̂ 1; . . . ; F̂P� are the independent variables, while D ¼ ½D1; . . . ;DP� represents the
measurements. The values of the independent variables minimizing the cost function (15) are the MLEs
ðĤML; F̂MLÞ of the true ðH;F0Þ while the MLE of the dependent variable X0 is given by

X̂ML ¼ ĤMLF̂ML. (16)

Thereto the method of the Lagrangian multipliers is applied to Eq. (15), resulting in

‘ðĤ ; D̂; L̂Þ ¼
XP

p¼1

trðC�1D ½Dp � D̂�½Dp � D̂�H Þ þReðtrðL̂HB̂D̂ÞÞ, (17)

where D̂ 2 CðNoþNiÞ�Ni , B̂ ¼ ½Ĥ ;�INo
� 2 CNo�ðNoþNiÞ and where L̂ is a Lagrangian multiplier matrix for the

constraint B̂D̂ ¼ 0 (use of the real part of the trace of L̂HB̂D̂ is just a convenient way of summing
ReðL̂jkÞReð

P
l B̂jlD̂lkÞ and ImðL̂jkÞ Imð

P
l B̂jlD̂lkÞ over all j; k). In its extremum, ‘ðĤ; D̂; L̂Þ must be stationary
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with respect to Ĥ, D̂ and L̂. Setting q‘=qReðD̂Þ þ
ffiffiffiffiffiffiffi
�1
p

q‘=q ImðD̂Þ equal to zero gives (notice that ‘ is not an
analytic function, thus, q‘=qD̂ does not exist).

�2C�1D

XP

p¼1

Dp � PD̂

 !
þ B̂HL̂ ¼ 0. (18)

Similarly, the derivative with respect to ReðĤÞ and ImðĤÞ, respectively ReðL̂Þ and ImðL̂Þ give

L̂F̂H ¼ 0, (19)

B̂D̂ ¼ 0. (20)

As F̂ 2 CNi�Ni is a regular matrix by assumption, (19) can only be satisfied when L̂ 2 CðNoþNiÞ�Ni equals zero.
Consequently, Eq. (18) reduces to

D̂ ¼
1

P

XP

p¼1

Dp (21)

and, by way of Eq. (20), the transfer matrix estimate ĤML becomes

ĤML ¼
1

P

XP

p¼1

X p

 !
1

P

XP

p¼1

Fp

 !�1
. (22)

Note that a priori knowledge of CD is not required any more to obtain the ML estimate of H.

Appendix B. Covariance matrix of the MFRF ML estimates

Defining X̂ ¼ 1
P

PP
k¼1 X k and F̂ ¼ 1

P

PP
l¼1Fl , Eq. (6) can also be written as

ĤML ¼ X̂F̂
�1
. (23)

Starting from a sensitivity analysis, an expression for the covariance matrix of the ĤML FRF estimates can be
found

dðĤMLÞ ¼ dðX̂ÞF̂
�1
þ X̂dðF̂

�1
Þ (24)

with dðF̂
�1
Þ ¼ F̂

�1
dðF̂ÞF̂

�1
. Using the Vector vec and Kronecker � operators, this can also be written as

vecðdĤMLÞ ¼ ðF̂
�T
� INo

Þ vecðdX̂Þ � ðF̂
�T
� X̂F̂

�1
Þ vecðdF̂Þ (25)

the covariance matrix of the ĤML FRF matrix is then given by

CovðĤMLÞ ¼ EfvecðdĤMLÞ vecðdĤMLÞ
Hg

¼ ðF̂
�T
� X̂F̂

�1
ÞEfvecðdF̂Þ vecðdF̂ÞHgðF̂

��
� F̂

�H
X̂

H
Þ

þ ðF̂
�T
� INo

ÞEfvecðdX̂Þ vecðdX̂ÞHgðF̂
��
� INo

Þ

� 2 hermðF̂
�T
� X̂F̂

�1
ÞEfvecðdF̂Þ vecðdX̂ÞHgðF̂

��
� INo

Þ ð26Þ

with E the Expectation operator, where for example

EfvecðdX̂Þ vecðdX̂ÞHg ¼ E
1

P

XP

k¼1

vecðdX kÞ
1

P

XP

l¼1

vecðdX lÞ
H

( )
(27)

under the assumptions that over the different measurements all signals and noise are stationary and the noise
is not correlated, reduces to

EfvecðdX̂Þ vecðdX̂ÞHg ¼
1

P
ðINi
� CXÞ. (28)
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Consequently, the expression for the covariance matrix becomes

CovðĤMLÞ ¼
1

P
ðF̂
�T

F̂
��
Þ � CX þ

1

P
ðF̂
�T

F̂
��
Þ � ðX̂F̂

�1
CFF̂

�H
X̂

H
Þ

�
1

P
ðF̂
�T

F̂
��
Þ � ðX̂F̂

�1
CovðF;XÞÞ �

1

P
ðF̂
�T

F̂
��
Þ � ðCovðX;FÞF̂

�H
X̂

H
Þ

which, given Eq. (23), finally results in

CovðĤMLÞ ¼
1

P

1

P

XP

k¼1

Fk

 !�
1

P

XP

l¼1

Fl

 !T
2
4

3
5
�1

� C� (29)

with

C� ¼ B̂CDB̂H ; B̂ ¼ ½ĤML;�INo
�. (30)

Appendix C. Proof for D-optimal experiment design
Lemma 1. The determinant of N �N matrices AðiÞ, i ¼ 1; . . . ; 2N2

, consisting of only 1’s and �1’s can only be

equal to �a, 0 or a, where a ¼ 2N�1.

Proof. If AðjÞ is singular then detðAðjÞÞ ¼ 0. On the other hand, if AðjÞ is regular, it has a determinant aa0.
Note that all regular matrices AðiÞ can be derived from AðjÞ by means of column and row permutations, and
multiplications of columns or rows with �1. These operations can only modify the sign of the determinant so
that j detðAðiÞÞj ¼ a; 8 regular matrices AðiÞ. Consider the regular N �N matrix AN constructed by making all
lower triangular elements including the diagonal ones equal to 1, while the upper triangular elements equal
�1. For example

A4 ¼

1 �1 �1 �1

1 1 �1 �1

1 1 1 �1

1 1 1 1

2
6664

3
7775. (31)

By means of linear column manipulations, it follows that detðAN Þ ¼ detðBNÞ where BN stands for AN but with
all entries ði; jÞ where j4i þ 1 equal to 0. For example

detðA4Þ ¼

1 �1 �1 �1

1 1 �1 �1

1 1 1 �1

1 1 1 1






















¼

1 �1 0 0

1 1 �1 0

1 1 1 �1

1 1 1 1






















¼ detðB4Þ. (32)

Expanding with respect to the first row gives

detðB4Þ ¼

1 �1 0 0

1 1 �1 0

1 1 1 �1

1 1 1 1






















¼ 1

1 �1 �1

1 1 �1

1 1 1
















� ð�1Þ

1 �1 �1

1 1 �1

1 1 1
















. (33)

From this example it follows that detðB4Þ ¼ 2 detðA3Þ ¼ 2 detðB3Þ ¼ 22 detðA2Þ ¼ 23, and by induction
detðAN Þ ¼ 2N�1. Thus, a ¼ 2N�1. &

Lemma 2. Consider the convex hull Q ¼ CofQð1Þ;Qð2Þ; . . . ;Qð2
N2

i Þg in the space RNi�Ni , supported by all matrices

QðnÞ 2 f1;�1gNi�Ni , n ¼ 1; . . . ; 2N2
i , consisting of only 1’s and �1’s. Then, j detðQÞj with Q 2 Q ¼ ½�1; 1�Ni�Ni

(i.e. the set of all Ni �Ni matrices with entries in the interval ½�1; 1�), reaches its maximum value in all regular

vertex matrices QðnÞ of the convex polytope Q.
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Proof. Firstly, it is shown that the maximum value is reached on the boundary qQ of the convex hull Q.
Indeed, if Q� is a point interior to Q then there exists an a41 such that aQ� 2 qQ and if detðaQ�Þa0 then
j detðaQ�Þj ¼ ja

Ni detðQ�Þj4j detðQ�Þj. The second part of the proof consists in showing that j detðQðiÞÞj 2
f0;Ag;8 vertices QðiÞ of the polytope Q. If Q� is a non-regular vertex matrix then j detðQ�Þj ¼ 0. On the other
hand, if Q� is regular then j detðQðiÞÞj equals some value A40. Note that all regular vertex matrices ofQ can be
derived from Q� by means of column and row permutations, and multiplications of columns or rows with �1.
These operations can only modify the sign of the determinant so that j detðQðiÞÞj ¼ A;8 regular vertices QðiÞ of
Q. Eventually, it is shown that for Q� 2 qQ, j detðQ�Þj cannot exceed the value A, obtained in the regular
vertex matrices. Assume therefore that there exist a matrix Q� 2 qQ with determinant equal to A and with at
least one entry different from 1 or �1. Assume for example that Q�11 is such an entry. The determinant of Q�

can be written as detðQ�Þ ¼
PNi

j¼1 ð�1Þ
jþ1Q�1j detðQ

�
ð�1;�jÞÞ where Q�ð�1;�jÞ is an ðNi � 1Þ-by-ðNi � 1Þ matrix

obtained by deleting the first row and the jth column of Q�. If Q�11 differs from 0, then it would be possible to
exceed A in a vertex which contradicts with our prior result. So, jQ�11j must equal 1 in the extremum.
Otherwise, if Q�ð�1;�1Þ equals 0, then the value of Q�11 does not matter. &
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